

AquaGas SmartCEMS Syngas Online Analyser

MADE TO MEASURE

Syngas Applications

CO, CO2, O2, N2, CH4, CxHy and H2

AQUA AQUA

Smart CEMS

- Automated Monitoring System integrated in Australia by <u>AquaGas</u>.
- Monitoring equipment is designed and manufactured by <u>MADUR</u> in Europe within the frame of an OEM agreement. Madur monitoring system are CE and ISO certified
- Data Acquisition and Handling System is designed and manufactured in UK by a1cbiss. CDAS Software Suite is Mcerts certified for CEM application.

madur

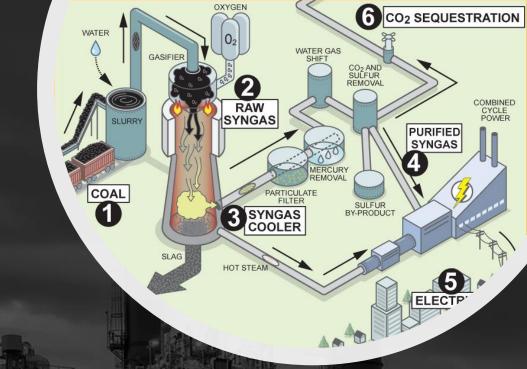
MADUR

- Madur electronics was founded in 1984 in Vienna
- In 1994, Madur headquarters moved to Poland
- Handheld, portable and stationary gas analysers
- Large selection of sensors for complex gas matrix
- Broad selection of gas conditioning and sampling methods
- Field replaceable components (pre-calibrated sensor)
- AquaGas distributorship since 2013.

a1cbiss

- A1-cbiss was created in 1989
- Offer a wide range of gas detection & cems solutions
- Now serve hundreds of customers
- Within a variety of industrial markets
- Mcerts certified gas monitoring solutions
- AquaGas distributorship since 2013.

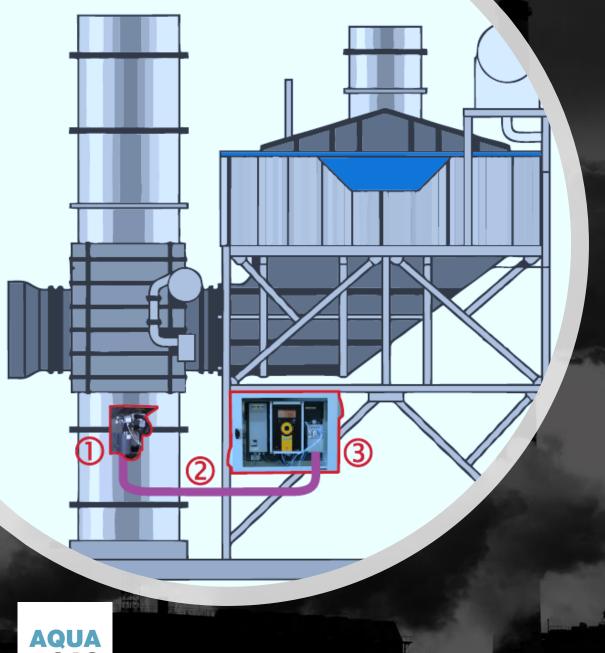
Smart CEMS Syngas Main Features


- Online Monitoring of Syngas Primary constituents in Syngas and HC streams
- Powerful sensor combinations for complex gas matrices
- Fully supported by AquaGas in Australia, New Zealand and the Pacific Islands (sales and services)
- CO, CO2, O2, N2, CH4, CxHy and H2, gas temperature, velocity and flow
- Modular and flexible design offering a pertinent selection of measuring and sampling methods
- Complies with international standards (EN14181, WA CEMS code, EPAs, NGER)
- Semi-automatic or automatic redundancy for greater data availability
- Empower NGER National Greenhouse and Energy Reporting
- Mcerts DAHS computer and CDAS software suite
- No requirements for career, purge or zero gas.

Smart CEMS Syngas Applications

- Emissions monitoring at the stack or sinter plant: CO, SO2, NOx, O2
- Raw material storage hall: CO monitoring
- Raw material silo: C2H2 and O2 monitoring
- Downstream of blast furnace uptake duct: CO, CO2, CH4 H2
- After dust bags Early detection of explosion risk for the dust bags from CO contents of the blast furnace gas CO CO2, CH4 H2
- Determination of the calorific value of the blast furnace gas for billing purposes CO, CO2, CH4 Calorific value H2, N2, O2, CO
- Optimizing the converter process from the composition of the converter off gas CO, CO2, O2 CO, CO2, H2
- Scrubber efficiency and OCS: H2S and VOC
- Syngas composition and BTU real-time monitoring: : CxHy, CH4, CO2, O2, H2S and VOC
- Reporting as per NGER National Greenhouse and Energy Reporting CO, CO2, CH4 Calorific value H2, N2, O2,
- Monitoring compliance of dust emission with existing regulations CO Dust
- Monitoring compliance of pollutant emission with existing regulations CO, NO, SO2, O2 Dust

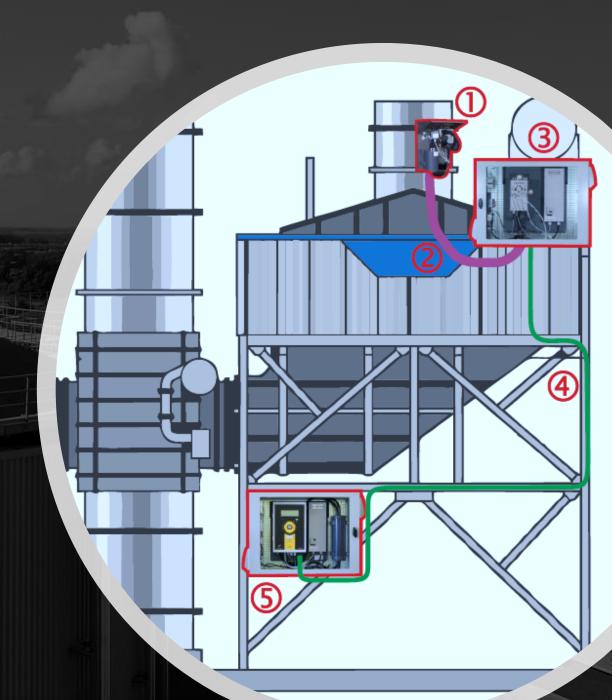
- Extended monitoring capabilities with the inclusion of key components such as HF, HCl, NH3
- Modular sampling train enabling optimal sampler transfer (up to 90m sampling line)
- Compact design
- Cost effective compare to typical intricates Syngas monitoring systems (spectrometer, multigas NDIR, Gas Chromatograph)



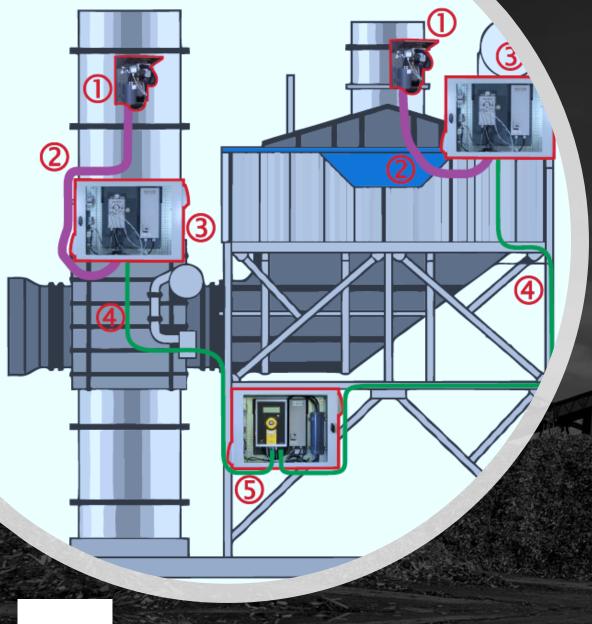
Smart CEMS Syngas References

- SUEZ Perth WA
- YARA Pilbara WA
- VISY Smithfield NSW Rive
- Gippsland Water VIC
- NYRSTAR Port Pirie SA
- ENVIROPACIFIC Barangaroo remediation site Sydney NSW
- PYROCAL Power Station Loganholme QLD
- Gold Coast City Council QLD
- Brisbane Utilities Brisbane QLD
- And more.

SmartCEMS Configuration Compact

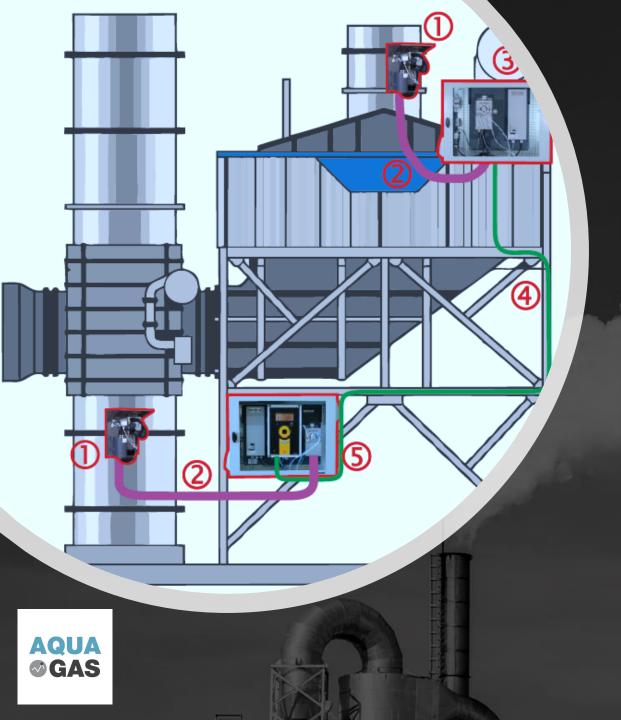

Direct Extractive

- 1. Stationary gas sampling probe with optional heated filter, insitu filter and backflush
- Heated sample line (1 to 5m)
- 3. Mamos Multigas CEM Analyzer with MD3 gas conditioning system with Peltier cooler, peristaltic pump and particulate filter with optional IP55 housing.



SmartCEMS Configuration Split

- 1. Stationary gas sampling probe with optional heated filter, Insitu filter and backflush
 - 2. Heated Sample line short (1 to 3m)
- 3. MD3 gas conditioning system with Peltier cooler, peristaltic pump and particulate filter installed near the sampling probe assembly and integrated into the AC housing.
- 4. Non-heated sampling line with gas and electric cables up to 100M
- 5. Mamos Multigas CEM Analyzer with optional IP55 housing



SmartCEMS Configuration Two stream Multiplexer

- 1. Stationary gas sampling probe with optional heated filter, Insitu filter and backflush
- 2. Heated Sample line short (1 to 3m)
- 3. MD3 gas conditioning system with Peltier cooler, peristaltic pump and particulate filter installed near the sampling probe assembly and integrated into the AC housing.
- 4. Non-heated sampling line with gas and electric cables up to 100M
- 5. Mamos Multigas CEM Analyzer with optional IP55 housing

SmartCEMS Configuration

Two stream Multiplexer
Twin Split compact with remote dryer

- 1. Stationary gas sampling probe with optional heated filter, Insitu filter and backflush
- 2. Heated Sample line short (1 to 3m)
- 3. MD3 gas conditioning system with Peltier cooler, peristaltic pump and particulate filter installed near the sampling probe assembly and integrated into the AC housing.
- 4. Non-heated sampling line with gas and electric cables up to 100M
- 5. Mamos Multigas CEM Analyzer with optional IP55 housing

Smart CEMS Analytical Performances

Lower Detection Limits

Gas	LoD	Unit
СО	0.01	%vol.
CO2	0.01	%vol.
CH4	0.01	%vol.
02	0.01	%vol.
H2	0.01	%vol.
СхНу	0.01	%vol.

SmartCEMS Syngas Analytical Performances

Measuring Ranges

Gas	Range	Unit
CH4	0-10 / 0-25 / 0-50 / 0-100	%vol.
СхНу	0-10 / 0-25 / 0-50 / 0-100	%vol.
CO2	0-10 / 0-25 / 0-50 / 0-100	%vol.
02	0-25	%
H2	0-100	%
Syngas Temp	-50 to 100	°C
Diff Pressure	-10 to +40	hPa
Gas velocity	1 to 50	m/s

Smart CEMS Analytical Performances

Accuracy and Response Time

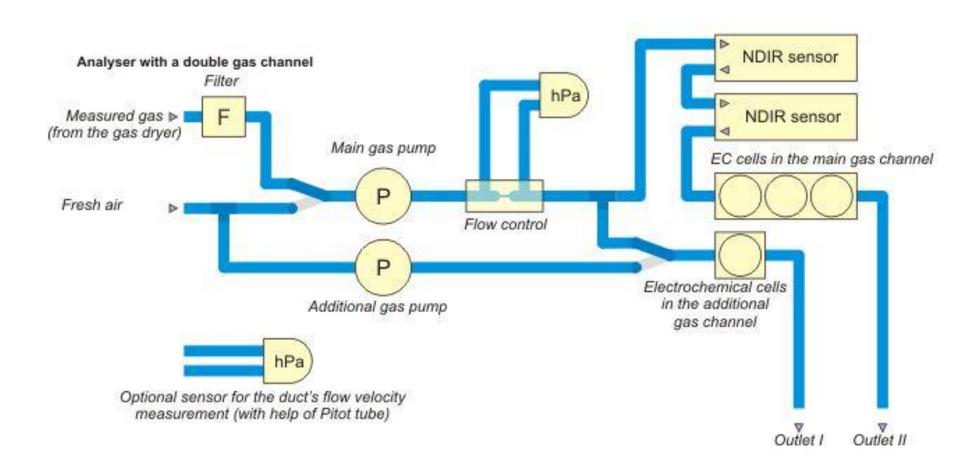
Gas	Accuracy	Time T (90)
CH4	± 0.05 % abs.	45s
СхНу	± 0.05 % abs.	45s
CO2	± 0.1 % abs.	45s
02	± 0.1 % abs.	45s
H2	± 0.1 to 1 % abs.	45s
Syngas Temp	0.1°C	5s
Diff Pressure	1Pa	5s
Gas velocity	0.1m/s	5s

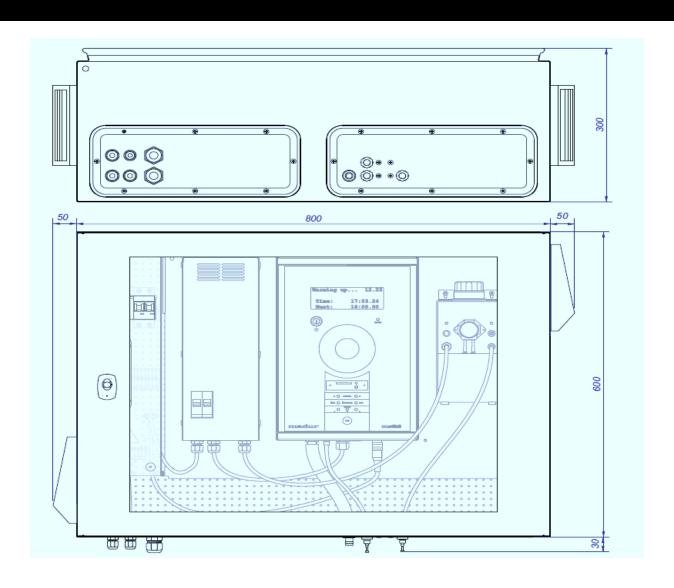
MONITORING SYSTEMS

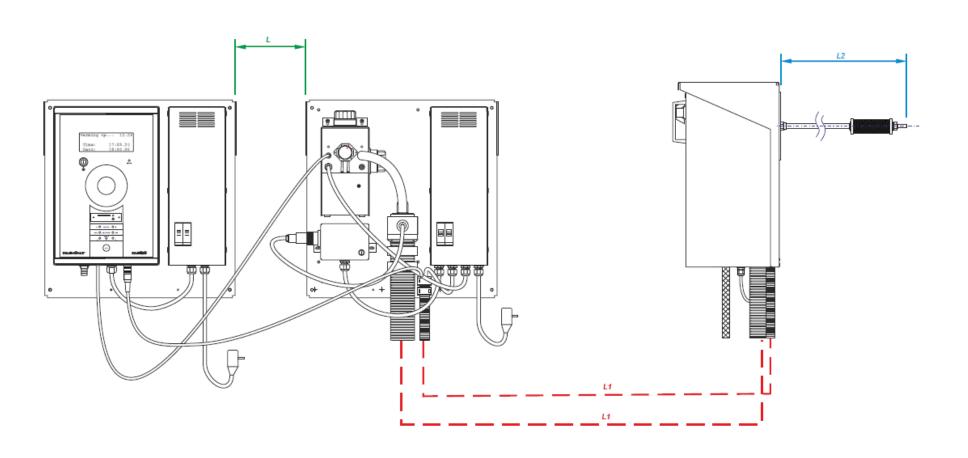
Smart CEMS

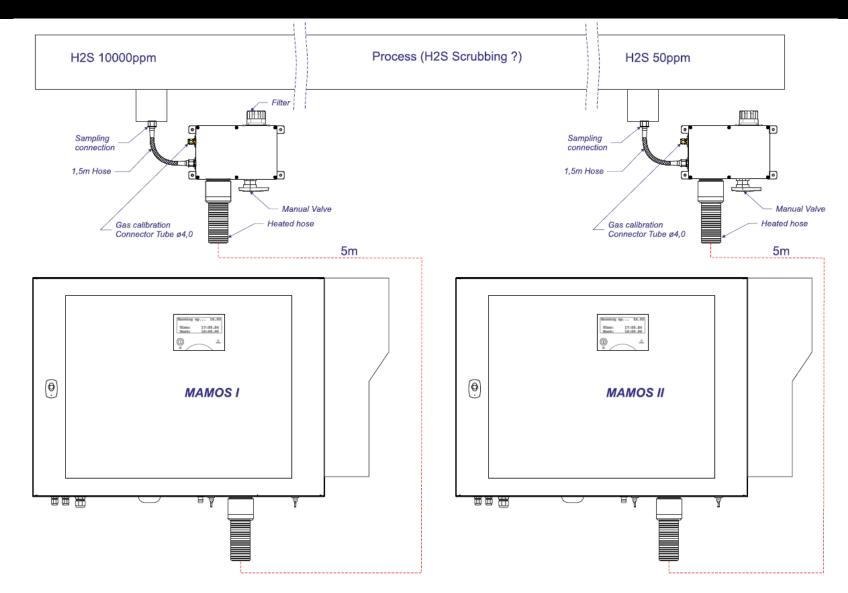
Analytical Performances

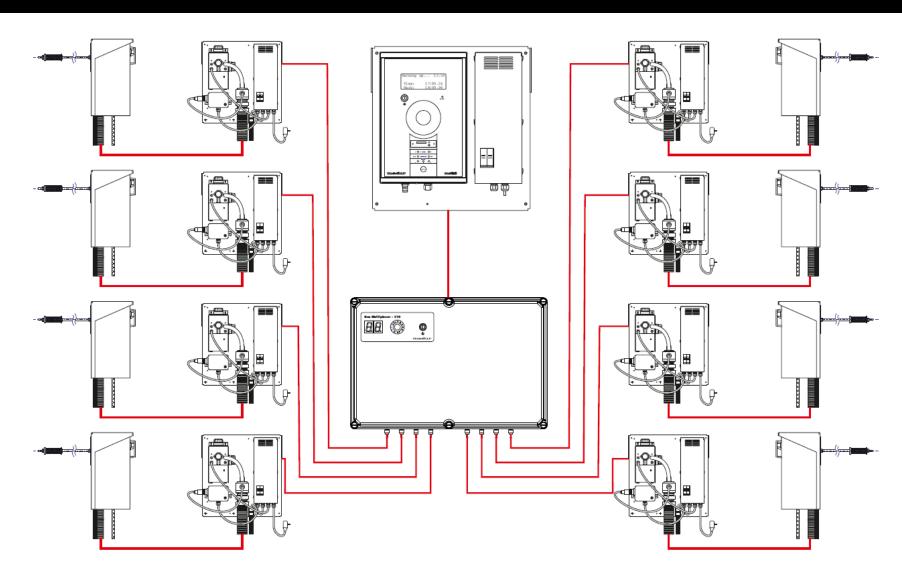
Approved Methods


- O2, CO: ISO 12039, CTM-030
- CO2: ISO 12039, OTM-13
- CH4: ISO 12039, OTM-13
- CxHy: ISO 12039, OTM-13
- NO, NO2: EPA Method CTM022 (Emissions reporting)
- VOC: USEPA Method 21 Photo Ionization Detection (PID)
- Flow, velocity and temperature: USEPA method 2C


SmartCEMS Syngas Flow diagram


SmartCEMS Syngas Enclosure


Smart Syngas General Arrangement


SmartCEMS Syngas Typical integration for scrubber monitoring

SmartCEMS Syngas 8 Streams Multiplexer

Smart CEMS Main Components

- Sampling Probe (Madur)
- Pitot Tube (Madur)
- Heated Sample Line (Madur)
- CEMS switch panel (Madur)
- Duty and standby analysers (Madur)
- IVIS calibration terminal and switchover panel (a1cbiss)
- DAHS computer and CDAS software suite (a1cbiss)

SmartCEMS Syngas

Sampling System

Sampling Probe

- Insitu Filter (20 microns)
- Light weight sampling probe
- Variable length of sampling tube (up to 3.5 m)
- Calibration solenoid valve for injection as per EN14181
- SS316L wetted components
- Backflush solenoid valve
- Flange mounted (adaptor available)
- Reduced maintenance

SmartCEMS Syngas Sampling System

Heated Sample Line

- Temperature controlled (150 deg C)
- Up to 50m length
- Prevent loss of targeted compounds (water soluble gases)
- Eliminate the risk of contamination
- Optimal and fast sample transfer
- IECEx solution available

SmartCEMS Syngas Sampling System

Pre-conditioning System

Gas purification unit designed for soot, tar, acid condensates continuous removal. Equipped with sampling Pump and Peristaltic pump, particulates filters and several inline scrubbers.

Scrubbers and Filters

- 2 x wash-bottles
- 1 x adsorption cartridge
- 1 x Particles Filter TF3000

<u>Pump</u>

- Capacity 38ml/min
- Sampling Pump PTFE coated 2 lpm

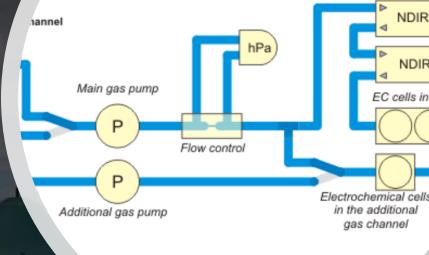
SmartCEMS Syngas Sampling System

Gas conditioning System

MD3 Peltier Cooler

- Temp set point: output gas dewpoint about +4°C
- Two inline filters
- Peltier cooler Stability +/- 1°C
- Cooling period: 5min
- Max gas flow 110 lph at inlet gas temp. 100°C and RH 100%

Peristaltic Pump


Capacity 38ml/min

SmartCEMS Syngas Multigas Analyser

Proprietary gas paths and cells

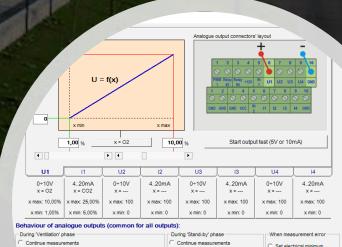
Safety filter

PTFE coated Diaphragm 1.5 l/min with automatic flow control

• T: 10°C to 50°C; RH: 5% to 90% (non-condensing)

Light (10kg) and compact design

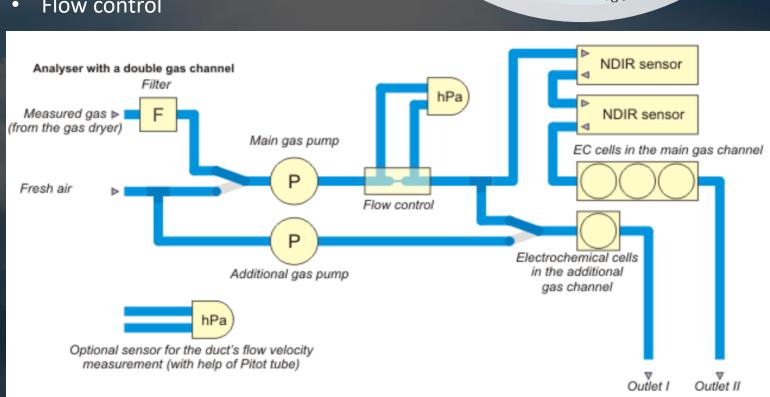
Madur's patented electronics and signal processing


Mosys configuration, acquisition and trending software

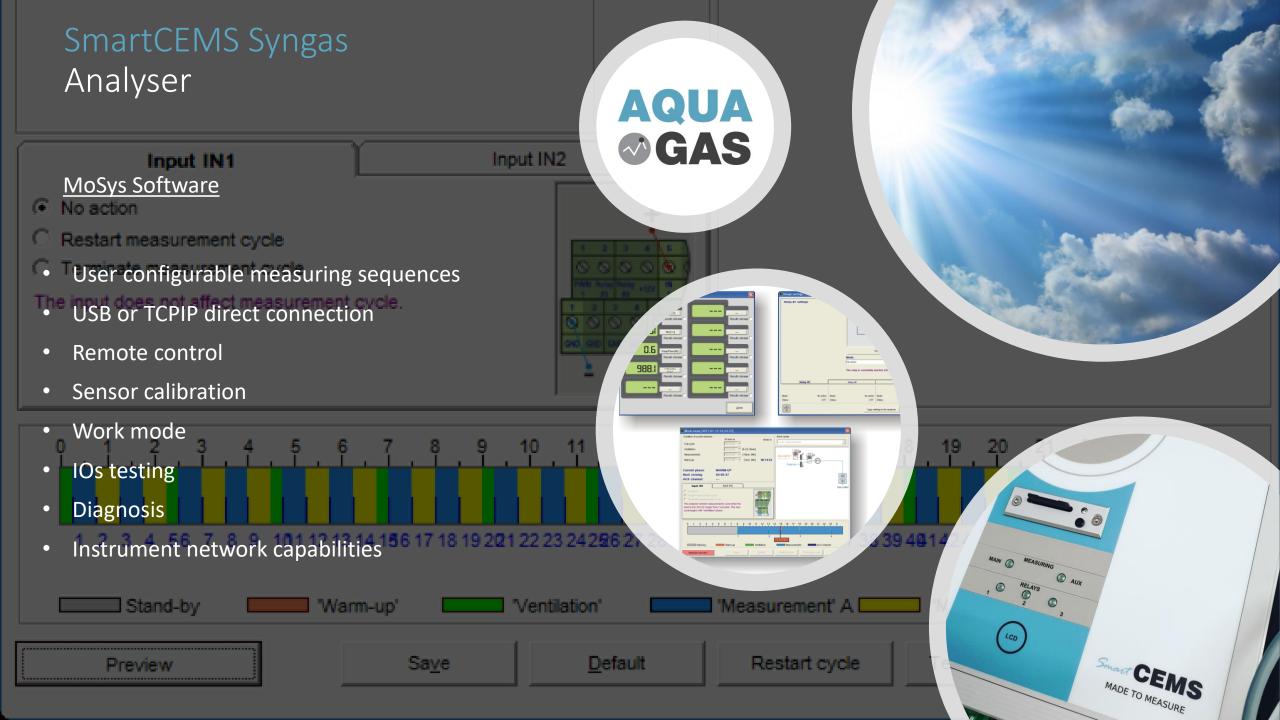
Field replaceable measuring cells

Built-in data logger with SD card

Large range of IOs incl. digitals (0-10 vdc; 4-20mA), analogues


Set electrical minimum

SmartCEMS Syngas


Analyser

Proprietary gas paths and cells

- Inline filters
- Auxiliary gas path
- Independent monitoring
- Flow control

SmartCEMS Syngas Analytical Performances

Measuring Principle

- CO2, CxHy, CH4: NDIR Non-Dispersive Infra-Red
 - Indutrial-type construction single path beam
 - Possibility to measure large concentrations up to 100% vol
 - Sensors are delivered pre-calibrated easy to swap at site
 - Do not wear out in time, cannot be poisoned
- H2: TCD Thermal Conductivity Detector
- O2 Partial pressure
 - Long-life oxygen sensor (up to 7 years in air).
 - Range 0÷100% vol
 - Suitable for stationary analysers
 - Do not wear out in time, cannot be poisoned
- H2S, NO, NO2, CO: EC ElectroChemical
 - easy to use and to calibrate
 - low (ppm) and very low ranges possible
 - Cheap (er) in comparison to other methods
- Pressure: Silicon piezoresistive
- Temperature: K-type thermocouple

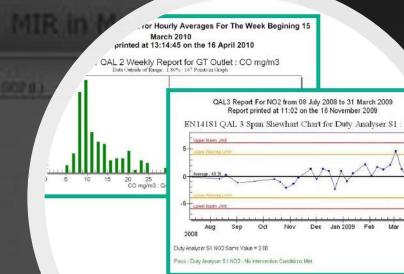
SmartCEMS Syngas

CDAS Data Acquisition and Handling System

Acquisition and data processing

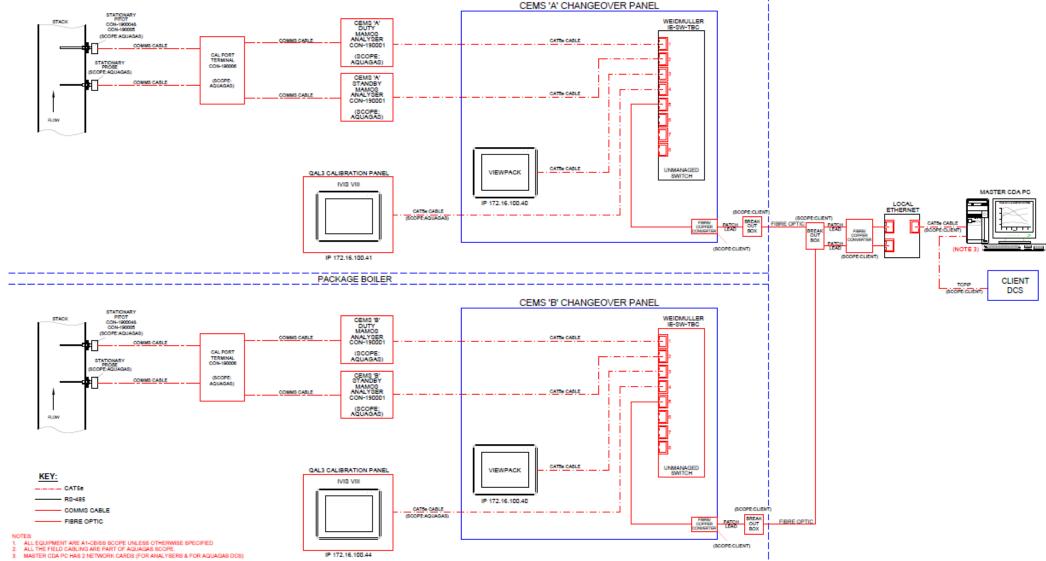
- Raw data (Instrument value)
- Calibrated data
- Corrected data (3....11% O2 and dry gas compensation)
- National Greenhouse and Energy Reporting NGER
- Adjusted data (reportable values)

Trending and supervision


- Realtime trending
- Alarms display
- View meter and gauge

Syngas analyser control and data handling

- Automatic redundancy
- Automatic calibration
- Data validation (measures and calibrations)


ibrated Corrected Data Data		Adjusted Data	One Minute Average	Current Fixed Thirty Minute Average	AQUA ©GAS	Fi
43.40	62.76	62.76	60.19	66.13	10.01	
3.25	4.70	4.70	4.51	4.90	4.90	
69.65	100.73	100.73	96.60	106.08	113.48	
1.97	2.85	2.85	2.69	2.91	3.29	
0.81	1.16	1.16	1.14	1.37	1.09	
`70	136.70	136.70	138.88	143.36	136.83	
3	11.98	11.98	11.34	12.16	11.66	
	236.60	236.60	240.12	245.13	222.89	
	ን?7.00	1027.00	982.08	996.39	963 °	
	70	275.00	289.15	279.28	^	
	1	7.47	4.48	6.21		

SmartCEMS Syngas Communications

SmartCEMS Syngas

CDAS Data Acquisition and Handling System

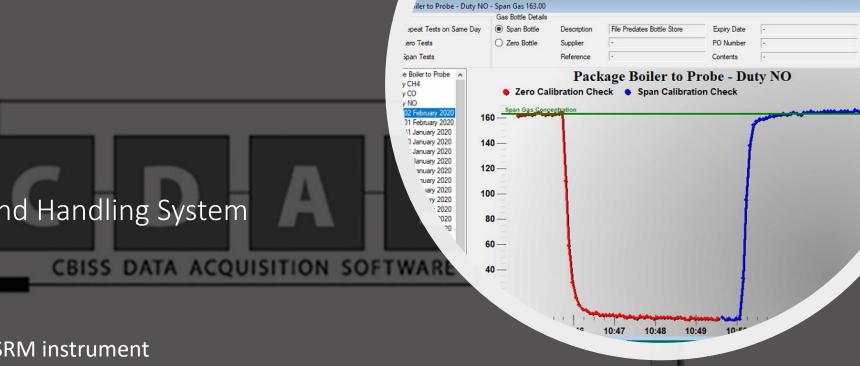
Compliance

- CGA
- EN14181 QAL3
- National Greenhouse and Energy Reporting
- WID, LCPD, IPPC
- Calibration of instrument to SRM instrument

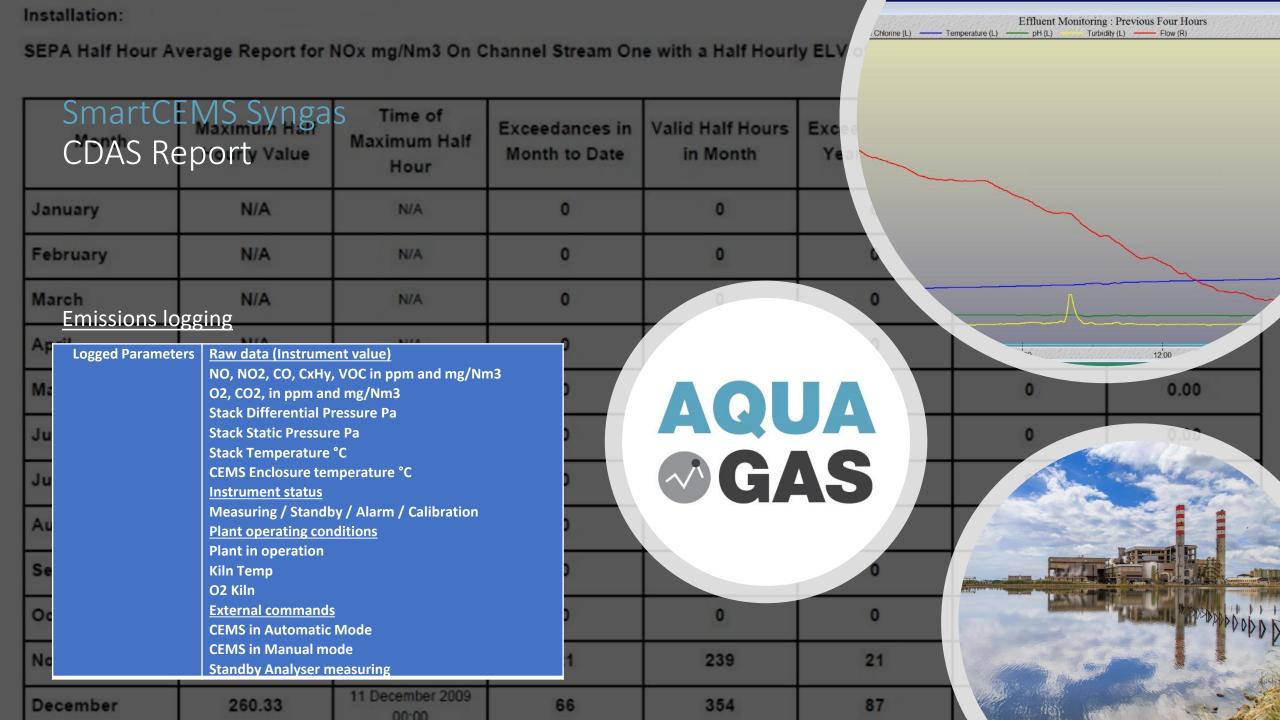
Certifications

MCERTS accredited (parts A, B, C1 & C2) real time data acquisition and reporting software

CDAS Elite: 2.0.2.14 : C	BISS Ltd - De	emo System	e foots	_														
File Edit View L	Isers Creat	te Window	Help															
Load Save 🔔	P 0 4	b & b 4	A HE	O E E														
Stream One					2	Standby Analyser					[2]	Stream Two					12	1
				2000	-									1		-	- Incident	
	Raw Data		One Minute T	Current hirty Minute	Current Daily		Raw Data	Adjusted	One Minute	Current Thirty Minute	Current Daily		Raw Data	Adjusted	One Minute	Current Thirty Minut	Current Daily	
		Data			Average			Data	Average	Average	Average			Data	Average	Average	Average	
HCI mg/Nm3	1.86	3.54	3.71	2.95	8.29	HCI mg/Nm3	1.69	2.74	2.92	3.03	8.23	HCI mg/Nm3	3.54	3.5	3.80	4.2	5.88	
SO2 mg/s	0.90	1.71	1.57	1.21	3.49	SO2 mg/s	0.80	1.30					3.60					
NO mg/Nm3	1.33	2.53	2.45	2.04	0.80	NO mg/Nm3	1.27	2.06	2.09	2.10	0.81	NO mg/Nm3	14.40	14.5	5 14.95	15.0	21.16	
NO2 mg/Nm3	25.00	47.60	49.56	41.52	94.19	NO2 mg/Nm3	26.80	43.50	43.15	42.30	93.62	NO2 mg/Nm3	65.50	66.1	7 65.85	73.7	283.27	
NOx mg/Nm3	N/A	51.47	53.31	44.63	95.41	N0x mg/Nm3	N/A	46.65	46.34	45.51	94.86	NOx mg/Nm3	N/A	88.4	3 88.72	96.7	315.63	
CO mg/m3	2.60	4.95	4.57	4.09	7.04	CO mg/m3	2.50	4.06	4.17	4.18	7.01	CO mg/m3	11.10	11.2	1 11.13	11.7	5 3 6.37	
H2O ppm	80.30	80.30	78.24	89.72	105.16	H2O ppm	80.30	80.30	76.23	86.32	104.86	H20 ppm	231.80	231.8	234.55	239.7	322.69	
Dry 02 %	15.70	15.70	15.56	14.34	13.30	Dry 02 %	14.80	14.80	15.00		13.32		11.10	11.1	11.06			
Flow kNm3/hr	21.06	21.06	21.00	20.44	20.62	Flow kNm3/hr	20.76	20.76			20.62		10.06					
Temperature C	232.00	232.00	219.17	210.54	249.89	Temperature C	214.00	214.00			249.63		96.00					
Pressure mbar	998.00	998.00	990.08	1019.12	1000.59	Pressure mbar	1043.00	1043.00			1000.82		1393.00					
Dust Nmg/m3	1.10	2.09	2.23	1.78	2.52	Dust Nmg/m3	1.20	1.95					15.00					
VOC (FID) Nmg/m3	0.67	1.28	1.29	1.08	0.68	VOC (FID) Nmg/m3	0.70	1.14	1.17	1.11	0.68	VOC (FID) Nmg/m3	3 1.10	1.1	1 1.11	1.0	2.80	
Str	eam	One	Runi	ning						Offlin		S	trear	n Tw	o Rui	nning)	
	MIR	in M	easur	е		Standby	/ Anal	yser M On		ing Stre	eam		MIF	R in I	Measu	ire		
☑ Stream One - One N		Frend HCI		000 #1		NOx (L)	0	a 2	✓ Stream Tw.	vo - One Minute		HOLD	000.00		10 11	Ţ	0 0 2	
120	O(L) -	- nu	.(L)	- SO2 (L)	Comment of the	VOX (L)			120	CO (L) —	HCI(L)	302 (L)		NOX (L)			
								EX										
100-									100-									
80-									80+								(N. 1972)	
								22										
60+									60+									
40							1		40							^	~~	
40-							-		40-									
00								a	00									
20-									20-									
0	-					F	-		0		T	- P				-	_	
0	15:00	1	15:3	30	40	6:00	16:30		0	-	15:00	15:30		16	:00		6:30	
			10.	,,,	- 10	7.00	10.30				10.00	15.50		10				
Received 29 February 2	012 16:38:39																CBISS So	ftware Engineer



SmartCEMS Syngas CDAS Data Acquisition and Handling System


Calibrations

- CGA
- Calibration of instrument to SRM instrument
- Daily, weekly, monthly
- Automatic reporting
- Probe and analyser mode
- Local and remote control
- IVIS touchscreen interface

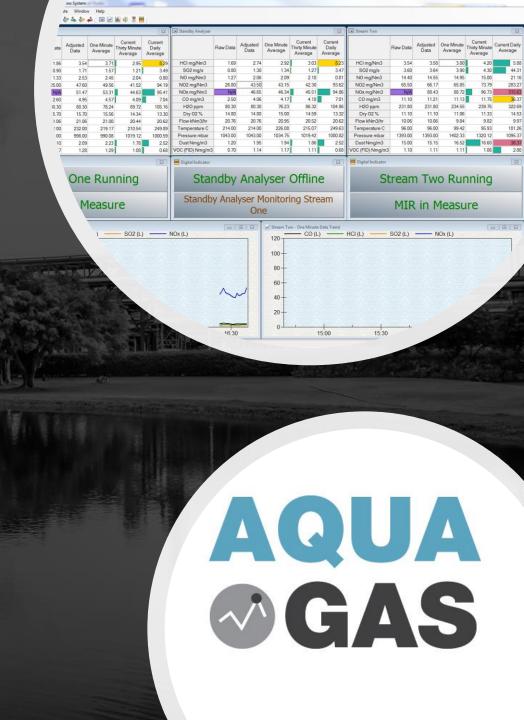
Emissions reporting

Reported Data NOx expressed as equivalent NO2 in ppmv at 11% O2

CO expressed in ppmv at 11% O2

Total VOCs expressed in ppmv at 11% O2

Total NMHC expressed in ppmv at 11% O2


Volumetric flow

Stack gas temperature in degree Celsius

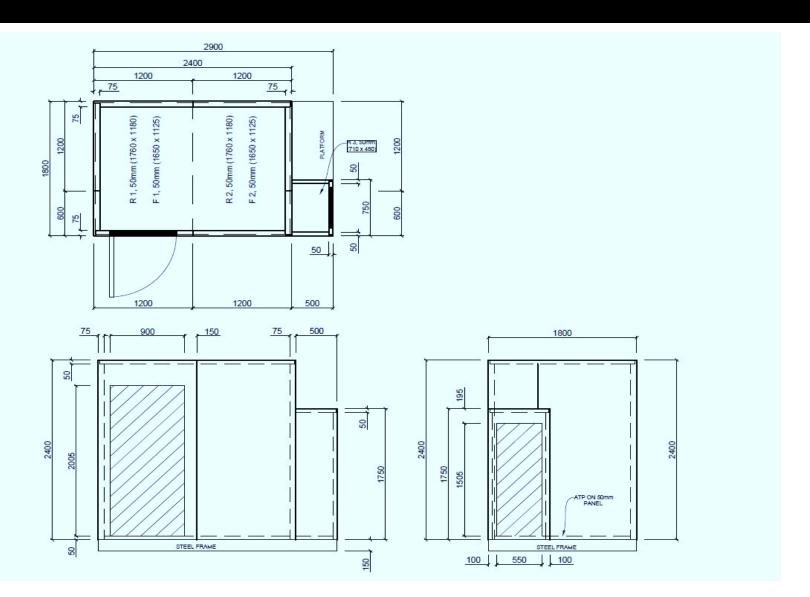
Hourly, Daily, Weekly, Monthly and Yearly mass Emissions rates for SOx, CO, NOx

and Total VOCs

SmartCEMS Syngas Systems Housing

Shelter

- CEMS Shelter Zone C/D
- Form 15 wind rating C3 for
- Cyclonic Zone D Category 2
- AC, Gland plate, Instrument mounting
- System integration, Wiring and tubing
- Desk, cupboard and workbench
- Lighting and power plugs
- 115 and 240 VAC Junction boxes
- Ambient temperature sensor


Field enclosure

- Fan (optional flow switch)
- IECEx certified solutions available
- Enclosed wiring and tubing
- Additional protection

SmartCEMS Syngas Shelter

